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Recent findings indicate that lipid signaling is essential for plant
resistance to pathogens. Besides oxylipins and unsaturated fatty
acids known to play important signaling functions during plant-
pathogen interactions, the very long chain fatty acid (VLCFA)
biosynthesis pathway has been recently associated to plant defense
through different aspects. VLCFAs are indeed required for the
biosynthesis of the plant cuticle and the generation of sphingolipids.
Elucidation of the roles of these lipids in biotic stress responses is
the result of the use of genetic approaches together with the iden-
tification of the genes/proteins involved in their biosynthesis. This
review focuses on recent observations which revealed the complex
function of the cuticle and cuticle-derived signals, and the key role
of sphingolipids as bioactive molecules involved in signal transduc-
tion and cell death regulation during plant-pathogen interactions.

Introduction

In response to pathogen attack, plants have evolved various mecha-
nisms, both constitutive and inducible, in order to defend themselves.
During the past 10 years, a number of studies have revealed the role
of lipids and lipid metabolites during plant-pathogen interactions: (i)
through the lipoxygenase pathway with the production of oxylipins
and for example jasmonic acid (JA), which are important signaling
molecules for defense regulation,!? (ii) through the unsaturated fatty
acid pathway by the remodeling of membrane lipid composition and
defense signaling,? and finally (iii) through the very long chain fatty

*Correspondence to: Dominique Roby; Laboratoire des Interactions Plantes-
Microorganismes (LIPM); UMR CNRSINRA 2594/441; BP 52627; Castanet-Tolosan
Cedex 31320 France; Tel.: 33.561.28.55.11; Fax: 33.561.28.55.61; Email:

Dominique.roby@toulouse.inra.fr
Submitted: 12/09/08; Accepted: 12/10/08

Previously published online as a Plant Signaling & Behavior E-publication:
http://www.landesbioscience.com/journals/psb/article /7580

94 Plant Signaling & Behavior

acid (VLCFA) pathway. The VLCFAs are fatty acids containing 20
to 36 carbons synthesized in the endoplasmic reticulum, which are
crucial for a wide range of biological processes in plants. Their role in
water-loss control or organ shape has been well studied. These lipids
are indeed required for the biosynthesis of the plant cuticle,*> and
the generation of sphingolipids,6’7 which can be bioactive molecules
on their own.®? This review focuses on recent studies that highlight
the involvement of VLCFAs and VLCFA derivatives in the response
of plants to pathogen attack. It will first describe the general pathway
and the regulation of VLCFA and VLCFA derivative biosynthesis;
then the role of these lipids in cell signaling and pathogen resistance
through different aspects will be discussed.

VLCFA Biosynthesis, Regulation and Use for Wax and
Sphingolipid Production

The elongation of the C16 and C18 fatty acids into VLCFAs
(C20-C36 chains) takes place in the endoplasmic reticulum. Elongase
complexes consisting in four enzymes mediate this step: a B-keto acyl-
coA synthase condensing enzyme (KCS), a B-keto acyl-coA reductase
(KCR), an enoyl-coA reductase (ECR) and a B-hydroxyacyl-coA
dehydratase (HCD). Three different pathways then lead to the
transformation of VLCFAs: in the epidermis, (i) through the “acyl-
reduction pathway”, primary alcohols and wax-esters are formed by
fatty acyl-coA reductases (FAR) and wax synthases (WS), respec-
tively, (ii) in the “decarbonylation pathway”, VLCFAs are reduced to
alkanes, which in stems are oxidised by mid-chain alkane hydroxylase
(MAH]1) to form secondary alcohols and ketones (Fig. 1, reviewed in
ref. 5). Finally, (iii) in all cells, VLCFAs and long chain bases (LCBs)
(generated from C16 and C18 fatty acids) are the precursors for the
synthesis of sphingolipids’ (Fig. 1).

The identification of the genes encoding VLCFA biosynthetic
enzymes has been achieved mainly through mutational approaches.
FAE1 (fatty acid elongase 1) was the first identified enzyme by the
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Figure 1. Simplified pathways for VLCFA and VLCFA derivative biosynthesis and transport in Arabidopsis. Regulators of these pathways and their putative

action are indicated in red. PM: plasma membrane; CW: cell wall.

isolation of the fze/mutant altered in VLCFA accumulation in
seeds.!? Several KCS genes have also been identified through wax or
cuticle mutants,'"'4 then by homology searches. They belong to a
large gene family in Arabidopsis with 21 members,!>!¢ hypothesized
to drive the specificity (chain length, tissue...) of the elongation
reaction. Concerning the other enzymes of the elongase complex,
all of them have been recently found in plants, and in contrast to
KCS, they are encoded by single genes: ArYBRI59 codes for the first
reductase,!” PAS2 revealed to be a 3-hydroxacyl-CoA dehydratase!®
and CERI10, the homologue of the yeast gene 7SC13, encodes the
trans-2,3-enoyl-CoA reductase.!”

Concerning wax biosynthesis, most of the genes have been
screened by forward genetics in wax-deficient (cer) mutants. In
the “acyl-reduction pathway”’, CER4 is the major fatty acyl-CoA
reductase responsible for primary alcohol formation?® while WSD1
produces wax esters in Arabidopsis stems.?! In the “decarbonylation
pathway”, CER1 and CER3 are involved in alkane synthesis?>?3
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while secondary alcohols and ketones are produced by the mid-chain
alkane hydroxylase MAH1.24 Finally, ABC transporters such as
CER5 and WBC11 were shown to be involved in the transport of
wax constituents through the plasma membrane.?520

This is only recently that the genes controlling the biosynthesis
of plant sphingolipids have been identified. In Arabidopsis, the gene
AtLCBI, encoding the first subunit of the serine palmitoyltransferase
(SPT), has been recently characterized.?” The second subunit of SPT
was also identified; however, 2 genes (A¢#LCB2a and AtLCB2b) encode
functional isoforms of the LCB2 subunit.?® Recently, two sphingoid
base hydroxylase genes (SBH! and SBH2) have also been identi-
fied in Arabidopsis,?? together with an inositolphosphorylceramide
synthase? and a ceramidase from rice (OsCDase).?! This enzyme,
localized in the ER, catalyses the formation of phytoceramide.

Regulation of these biosynthesis pathways remains largely
unknown. We have recently shown that AtMYB30, a MYB tran-

scription factor, behaves as a transcriptional activator of several genes
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encoding the four enzymes forming the fatty acid elongase complex,
responsible for VLCFA biosynthesis.?? Interestingly, this regulator
acts as a positive regulator of a form of programmed cell death
(PCD) in plants, the Hypersensitive Response (HR).?3 Concerning
wax synthesis, the only transcription factors known to affect this
pathway belong to the WAX INDUCER (WIN)/SHINE family
in Arabidopsis.>* The WIN1/SHN1 transcription factor activates
genes encoding cutin biosynthetic enzymes for instance LACS2,
and wax biosynthetic genes. However, the control of wax forma-
tion by WIN1/SHN1 may be indirect and may require additional
transcription factors acting downstream of WIN1/SHNI. Finally,
a new regulatory pathway controlling cuticular wax accumulation
was recently discovered in Arabidopsis.>> The key component of this
pathway is the CER7 ribonuclease, a core subunit of the exosome
involved in RNA processing and degradation. The putative target of
this ribonuclease is an mRNA encoding a repressor of transcription
of the key wax biosynthetic gene CER3.

Plant Sphingolipids as Key Signals during Plant-Pathogen
Interactions?

Recent studies indicate that sphingolipids, as in animals,
may play in plants a major signaling role in diverse fundamental
processes. In terms of biotic stresses, the fungal Alternaria alternata
[ sp. lycopersici (AAL) toxin has been shown to trigger cell death by
disruption of sphingolipid metabolism.3® Tomato plants sensitive
to AAL-toxin accumulate more sphingolipid precursors due to a
mutation in the Asc gene, encoding a component of the key enzyme
ceramide synthase. Treatment with another mycotoxin, fumo-
nisin, which is a specific inhibitor of ceramide synthase, leads to a
dramatic accumulation of LCB and LCB-P in plant tissues. Lack
of AtDPLLI lyase activity in the mutant lines enhances sphingolipid
precursors accumulation and exacerbates fumonisin toxicity.?” An
Arabidopsis mutant, which is fumonisin B1 resistant (for 11-1),
fails to generate reactive oxygen intermediates (ROls), and cannot
initiate PCD when the mutant is challenged by fumonisin B1.3
FBRI1 encodes a long-chain base 1 (LCB1) subunit of serine
palmitoyltransferase (SPT).3? Consequently, free sphingoid bases
are involved in the control of PCD in Arabidopsis, presumably
through the regulation of the ROI level upon receiving different
developmental or environmental cues.?®

Another evidence in favor of the role of sphingolipids in the
control of cell death in the context of plant-pathogen interactions has
been the characterization of the mutant accelerated cell death 5 (acd5).
The corresponding gene encodes a ceramide kinase (CERK)40
and the mutant exhibits spontaneous cell death, shows enhanced
disease symptoms during a pathogen attack and accumulates CERK
substrates. This suggests that the balance between the ceramides
and their phosphorylated derivatives are involved in the modulation
of PCD and in the control of disease susceptibility. As previously
mentioned, AtMYB30 has been shown to be a positive regulator of
the hypersensitive response, through activation of VLCFA biosyn-
thetic genes and increased sphingolipid production,3>3% suggesting
that sphingolipids would act as pro-cell death signals. The recent
discovery of the gene ERHI, a gene acting as a negative regulator
of the HR dependent on the resistance gene RPWS in response to
powdery mildew infection, is also clearly in favor of a role of sphin-
golipids in the control of cell death and resistance in plants. Indeed,
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this gene encodes an inositolphosphorylceramide synthase (IPCS),
and is rapidly induced during a pathogen attack, suggesting that
it serves to increase GIPC (glucosyl inositolphosphorylceramide)
biosynthesis for a defense related function.??

Together, these results show that multiple steps of the sphin-
golipid biosynthetic pathway are activated by infection, and that
programmed cell death and disease resistance are in many cases
tightly associated with this regulatory process. LCBs, ceramides and
their derivatives might be the critical messengers to control cell death,
or other defense mechanisms. Consequently it will be determinant
to identify the targets of these bioactive sphingolipids to understand
these regulatory mechanisms.

Are Lipid Rafts All-Armed Battleships?

In addition to their possible direct role as signaling components,
sphingolipids also count among the constitutive elements of the
plasma membrane (PM). They are also hypothesized to play a role
in plant defense signaling as such. Sphingolipids were indeed shown
to be quantitatively predominant, together with sterols, in the deter-
gent insoluble membrane (DIM) fraction of the PM from tobacco,
Arabidopsis and Medicago.*!43 The lipid raft (LR) model*4 assumes
that because of this distinctive biochemical composition, DIMs are
organized in vivo in microdomains, and that the dynamic exclusion/
incorporation processes within these domains can regulate signaling
events. Consistently, DIMs were found to have specific protein
content.*> Some proteins are predominantly DIM-associated like

remorins?6

or known components of plant defense responses such
as the NDR1 GPl-anchored protein, suggesting the involvement of
LRs in defense signaling cascades.4”

Although direct involvement of LRs in plant defense responses has
not been clearly evidenced to date, the cell biology of various plant-
pathogen interactions is consistent with the LR theory. Polarization
of the cytoskeleton, aggregation of peroxisomes, endoplasmic retic-
ulum and Golgi bodies at the interface with the pathogen are among
the first observable responses of a plant cell to a pathogen attack
(reviewed in ref. 48). In addition, polarization and focal accumula-
tion processes are not only found inside the cell but also inside the
PM itself. Barley and Arabidopsis cells challenged by the powdery
mildew pathogen Blumeria graminis, were shown to undergo focal
accumulation, beneath the site of appresorium formation, of a subset
of GFP-fused PM proteins (the resistance locus O, the protein MLO,
the ROR2 syntaxin and its Arabidopsis ortholog PEN1), whereas
other PM proteins (aquaporin isoforms, SYP132 syntaxin) were not
re-localized upon infection.* Similarly, the GFP-fused ATP-binding
cassette transporter PEN3/PDRS localizes in the PM of Arabidopsis
un-inoculated leaves and showed strongly focused accumulation at
sites of Blumeria attempted penetration.>”

However, if experimental evidences for filamentous pathogen-
induced focal protein clustering at the PM are emerging, the
underlying mechanisms remain enigmatic. On the one hand, the
filipin antibiotic, which binds sterols, shows enhanced labelling at
Blumeria entry sites, suggesting aggregation of plant LRs or the
release of sterol-rich fungal material.>! On the other hand, the hexose-
proton symporter HUP1 was shown to segregate in the DIM fraction
and to show a sterol-dependent spotty distribution in the PM when
expressed in yeast.”? These results suggest the existence of detergent-
insoluble PM domains in planta. Nevertheless, lateral organization of
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membrane lipids could not be clearly associated to pathogen-induced
protein focal accumulation events to date. Therefore, the precise role
of PM domain clustering in plant defense responses remains poorly
documented. In addition, it is still not known whether membrane
focal accumulation is restricted to response toward filamentous
pathogens or to certain types of plant-pathogen interactions.

The Plant Cuticle, More than a Protective Shell against
Pathogens

Well-organized cuticle layers, made of cutin and wax polymers,
covers aerial plant surfaces. In many plant species, cutin originates
from polymerization of C16 and C18 ®-hydroxylated fatty acids.
By contrast, wax synthesis requires elongation of C16 and C18 fatty
acids into VLCFAs. These compounds form the outermost layer in
epidermal cells, and therefore the first barrier encountered by patho-
gens in the natural environment. Nevertheless the impact of plant
cuticle on the outcome of the interaction with a pathogen is beyond
a simple barrier effect.

First, the cuticle can be considered as a reservoir of signals telling
phytopathogenic fungi that they found a proper host to infect.
This hypothesis originates from the observation that fungi often
secrete cutinases when reaching a plant, and that cutin monomers
induce appresorium formation in Magnaporthe grisea and Erysiphe
graminis.”>>* Consistently, removal of cuticular waxes reduces
conidial germination of Blumeria graminis on barley,’® and the
altered cuticle of the sma4 (allelic to brel and lacs2) Arabidopsis
mutant inhibits Botrytis cinerea spore germination.56 Therefore, a
thinner, more permeable cuticle does not facilitate the entry of these
pathogenic fungi but rather arrests their invasion.

In addition to being detrimental to the growth of the pathogen,
cuticle alteration also favors the onset of defense by the plant, as
plants can perceive modifications of the cuticle. Exogenous expres-
sion of a fungal cutinase gene in Arabidopsis provides immunity to
B. cinerea due to the release of fungitoxic compounds and activation
of other resistance-associated genes. Similarly, release of antifungal
compounds and enhanced B. cinerea resistance have been observed
in the bgd mutant that exhibits cuticular defects.”” Increased release
of antifungal compounds also plays a role in the enhanced resistance
to Botrytis and Sclerotinia observed in sma4 mutant.’® Nevertheless,
a positive effect of the cuticle on defense processes is also docu-
mented. The plant cuticle not only protects from water loss, but
also reduces plant-pathogen recognition and efficient release of
antifungal compounds in certain cases during the infection process.
Double knockouts gpar4/gpar8, with strongly reduced cutin content,
are less resistant to Alternaria brassicicola.”® Whereas more resistant
to B. cinerea, the sma4 mutant shows a normal susceptible pheno-
type toward Erysiphe cichoracearum.>® These two examples illustrate
the current consensus that cuticle thickness has a negative effect
on biotrophic fungal growth. The 472/ mutant has a cutin content
reduced by 30%, and shows enhanced susceptibility to virulent
Pseudomonas syringae.’® This mutant causes enhanced expression of
bacterial type III genes, suggesting that cutin-related compounds
repress bacterial type III genes expression in the plant apoplast. On
the other hand, a##1 displays enhanced resistance to B. cinerea.>®

Taken together, these data essentially based on analysis of cuticle-
defective mutants, indicate that cuticle-derived signals act negatively
on necrotrophic fungal infection and positively on biotrophic fungi
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and virulent bacterial pathogens. However, further investigations
involving gain-of-function experiments and various plant-pathogen
interactions will be required before reaching a general rule on the
contribution of cuticle related genes and cuticle composition to plant
defense mechanisms.

Conclusions and Perspectives

Within the past few years, there has been a “burst” of articles in the
field of plant pathology which have revealed the various and major
roles of lipids, and more recently, the function of very long chain
fatty acid-based molecules during plant-pathogen interactions (Fig.
2). Identification of the roles of these lipids in biotic stress responses
is the result of the use of genetic approaches together with the rapid
progress made in the identification of the genes/proteins involved in
lipid biosynthesis. These discoveries highlight the complex function
of the cuticle and cuticle-derived signals, and the key role of sphingo-
lipids as bioactive molecules involved in signal transduction and cell
death regulation. However, the results are still fragmentary and need
further investigations.

Sphingolipids are known to function in all eukaryotic cells as
membrane structural and signaling components. Intensive research
in the animal field has shown that these compounds play essential
regulatory roles in the control of cell death and cell survival.%¢1:62
A number of reports described here suggest that plant sphingolipids
might be involved in similar regulatory mechanisms. However, this
notion that there may be common lipid signaling mechanisms for
the control of cell death in plants and in animals often relies on
indirect or correlative evidences.%3% Besides, these compounds
being active in low amounts and existing under a large number of
different molecular forms, studies on their biochemistry are still
limited. Extraction, separation and identification of such compounds
remain a challenge, and an accurate picture of the different species
and biosynthetic pathways of plant sphingolipids is not yet available.
The systematic identification of sphingolipid biosynthesis genes will
also face the difficult task of assessing their enzymatic/molecular
function and of the identification of their targets. Together with a
genetic approach to addressing the question of their importance in
defense/cell death signaling, these are keys to understand the role of
sphingolipids in plant cell signaling.

After intensive studies in animal systems, lipid rafts start appearing
as ubiquitous entry sites for pathogens, in plants as well. Again,
the gap between animals and plants in term of PM raft functions
should not be filled in prematurely. But in this case, biochemistry
is ahead of genetics, and assessing the existence and function of PM
microdomains in vivo is a major expectation. A key step toward this
achievement could be the identification of plant counterparts of
caveolins, or flotillins, that is to say protein markers of lipid rafts that
allow detection of rafts in living cells. Pathogen attack would then be
a convenient stimulus to study raft dynamics and role in signaling.

Finally, epicuticular waxes are specific to plants, known to play
important general functions in the interactions of plants with their
environment.®® This key adaptation in the evolution of plants®” has
been shown to influence the issue of plant-pathogen interactions in
unexpected ways. This is clearly an exciting area of research, and the
important question of the signaling function of some components of
the cuticle will need future work, using different plants, pathogens
and adequate biochemical methods to identify the active molecules
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Figure 2. Schematic diagram summarizing the contribution of VLCFAs and VLCFA-derived molecules to the molecular dialogue occurring during plant-
pathogen interactions. Exchanges between the plant and different pathogens involve (i) VLCFAs and sphingolipid synthesis, (i) cuticular compounds, and
(iii) PM microdomain organization. As a consequence, pathogen growth is differentially affected by the onset of the HR, according to their invasion strategy
(e.g., positively for necrotrophic fungi, negatively for biotrophic fungi). Plain red arrows indicate a positive effect; dotted lines with boxed arrowhead, a
negative effect, dotted red arrows shows putative positive effect. PM, Plasma Membrane; TTSS, Type Three Secretion System; LCB, Long chain Base; HR,

Hypersensitive Response.

and their exact roles. Another intriguing question is related to the
putative signaling roles of LTPs (Lipid Transfer Proteins). In favour
of this hypothesis is the identification of DIRI, a putative LTP
involved in the long distance signaling associated with systemic
resistance.’® DIR1 has been recently structurally characterized,
sharing some structural and lipid binding properties with LTP2,
but displaying some specific features.”” A functional analysis of
this protein family in Arabidopsis would bring some light on lipid
signaling and transport. Finally, in depth analysis of the functions of
VLCFAs and VLCFA derivatives during plant-pathogen interactions
will undoubtedly provide access to fundamental functions of these
compounds during plant development.
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